Aerogeles a partir de nanocelulosa: Aplicaciones en la agroindustria

Autores/as

DOI:

https://doi.org/10.17268/agrosci.2024.006

Palabras clave:

aerogel, nanocelulosa, capacidad de absorción, conductividad térmica, residuos agroindustriales, celulosa

Resumen

Los aerogeles a base de nanocelulosa han emergido como materiales prometedores en diversas aplicaciones industriales debido a sus propiedades excepcionales, como alta porosidad, baja densidad y capacidad de absorción. Estos materiales, derivados del biopolímero más abundante en la Tierra, la celulosa, presentan ventajas significativas en la búsqueda de soluciones sostenibles y eficientes. La nanocelulosa, obtenida a través de métodos avanzados de síntesis, ofrece una combinación única de resistencia mecánica, biodegradabilidad y compatibilidad ambiental. Este artículo revisa las aplicaciones de los aerogeles de nanocelulosa en la agroindustria, destacando su potencial en el embalaje de alimentos, control de humedad y filtración de agua, entre otros. Además, se exploran los desafíos asociados con su producción a gran escala y las perspectivas futuras en la integración de estos materiales en sistemas industriales y tecnológicos más amplios. Con un enfoque en la sostenibilidad y la eficiencia, los aerogeles de nanocelulosa representan una innovación clave en la ciencia de los materiales y sus aplicaciones en sectores críticos.

Citas

Abdullah, Zou, Y., Farooq, S., Walayat, N., Zhang, H., Faieta, M., Pittia, P., & Huang, Q. (2023). Bio-aerogels: Fabrication, properties and food applications. Critical Reviews in Food Science and Nutrition, 63(24), 6687-6709. https://doi.org/10.1080/10408398.2022.2037504

Araby, S., Qiu, A., Wang, R., Zhao, Z., Wang, C.-H., & Ma, J. (2016). Aerogels based on carbon nanomaterials. Journal of Materials Science, 51(20), 9157-9189. https://doi.org/10.1007/s10853-016-0141-z

Aragón-Gutierrez, A., Arrieta, M. P., López-González, M., Fernández-García, M., & López, D. (2020). Hybrid Biocomposites Based on Poly(Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 13(21), 4910. https://doi.org/10.3390/ma13214910

Araújo, D. J. C., Vilarinho, M. C. L. G., & Machado, A. V. (2019). Agroindustrial residues as cellulose source for food packaging applications. En C. Vilarinho, F. Castro, M. Gonçalves, & A. L. Fernando (Eds.), Wastes: Solutions, Treatments and Opportunities III (1.a ed., pp. 217-223). CRC Press. https://doi.org/10.1201/9780429289798-35

Aycock, R. (2017). Comparing the Bulk Modulus of Aerogels Obtained Through Different Formulas. Research & Development in Material Science, 2(3). https://doi.org/10.31031/RDMS.2017.02.000537

Azadi, E., & Dinari, M. (2023). Green Synthesis, Characterization, and Properties of Carbon Aerogels. En Shahid Ul Islam & C. M. Hussain (Eds.), ACS Symposium Series (Vol. 1441, pp. 1-23). American Chemical Society. https://doi.org/10.1021/bk-2023-1441.ch001

Balaji, D., Sivalingam, S., Bhuvaneswari, V., Amarnath, V., Adithya, J., Balavignesh, V., & Ganesh Surya, R. (2022). Aerogels as alternatives for thermal insulation in buildings – A comparative teeny review. Materials Today: Proceedings, 62, 5371-5377. https://doi.org/10.1016/j.matpr.2022.03.541

Budtova, T., Aguilera, D. A., Beluns, S., Berglund, L., Chartier, C., Espinosa, E., Gaidukovs, S., Klimek-Kopyra, A., Kmita, A., Lachowicz, D., Liebner, F., Platnieks, O., Rodríguez, A., Tinoco Navarro, L. K., Zou, F., & Buwalda, S. J. (2020). Biorefinery Approach for Aerogels. Polymers, 12(12), 2779. https://doi.org/10.3390/polym12122779

Calvo, V., Álvarez Sánchez, M. Á., Güemes, L., Martínez-Barón, C., Baúlde, S., Criado, A., González-Domínguez, J. M., Maser, W. K., & Benito, A. M. (2023). Preparation of Cellulose Nanocrystals: Controlling the Crystalline Type by One-Pot Acid Hydrolysis. ACS Macro Letters, 12(2), 152-158. https://doi.org/10.1021/acsmacrolett.2c00705

Carter, N., Grant, I., Dewey, M., Bourque, M., & Neivandt, D. J. (2021). Production and Characterization of Cellulose Nanofiber Slurries and Sheets for Biomedical Applications. Frontiers in Nanotechnology, 3, 729743. https://doi.org/10.3389/fnano.2021.729743

Clauser, N. M., Felissia, F. F., Area, M. C., & Vallejos, M. E. (2022). Technological and economic barriers of industrial-scale production of nanocellulose. En Green Nanomaterials for Industrial Applications (pp. 21-39). Elsevier. https://doi.org/10.1016/B978-0-12-823296-5.00015-0

Donėlienė, J., Fataraitė-Urbonienė, E., Danchova, N., Gutzov, S., & Ulbikas, J. (2022). The Influence of the Precursor’s Nature and Drying Conditions on the Structure, Morphology, and Thermal Properties of TiO2 Aerogels. Gels, 8(7), 422. https://doi.org/10.3390/gels8070422

Fagnani, D. E., Jehanno, C., Sardon, H., & McNeil, A. J. (2022). Sustainable Green Polymerizations and End‐of‐Life Treatment of Polymers. Macromolecular Rapid Communications, 43(13), 2200446. https://doi.org/10.1002/marc.202200446

Fernandes, A., Cruz-Lopes, L., Esteves, B., & Evtuguin, D. (2023). Nanotechnology Applied to Cellulosic Materials. Materials, 16(8), 3104. https://doi.org/10.3390/ma16083104

Guild, M. D., García-Chocano, V. M., Sánchez-Dehesa, J., Martin, T. P., Calvo, D. C., & Orris, G. J. (2016). Aerogel as a Soft Acoustic Metamaterial for Airborne Sound. Physical Review Applied, 5(3), 034012. https://doi.org/10.1103/PhysRevApplied.5.034012

Karamikamkar, S., Yalcintas, E. P., Haghniaz, R., De Barros, N. R., Mecwan, M., Nasiri, R., Davoodi, E., Nasrollahi, F., Erdem, A., Kang, H., Lee, J., Zhu, Y., Ahadian, S., Jucaud, V., Maleki, H., Dokmeci, M. R., Kim, H., & Khademhosseini, A. (2023). Aerogel‐Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease‐Targeting Applications. Advanced Science, 10(23), 2204681. https://doi.org/10.1002/advs.202204681

Liu, P., Chen, X., Li, Y., Cheng, P., Tang, Z., Lv, J., Aftab, W., & Wang, G. (2022). Aerogels Meet Phase Change Materials: Fundamentals, Advances, and Beyond. ACS Nano, 16(10), 15586-15626. https://doi.org/10.1021/acsnano.2c05067

Lopes, W. C., Brito, F. M., Neto, F. E., Araújo, A. R., Leite, R. C., Viana, V. G. F., Silva-Filho, E. C., & Silva, D. A. (2023a). Development of a New Clay-Based Aerogel Composite from Ball Clay from Piauí, Brazil and Polysaccharides. Polymers, 15(11), 2412. https://doi.org/10.3390/polym15112412

Lopes, W. C., Brito, F. M., Neto, F. E., Araújo, A. R., Leite, R. C., Viana, V. G. F., Silva-Filho, E. C., & Silva, D. A. (2023b). Development of a New Clay-Based Aerogel Composite from Ball Clay from Piauí, Brazil and Polysaccharides. Polymers, 15(11), 2412. https://doi.org/10.3390/polym15112412

Lorevice, M. V., Claro, P. I. C., Aleixo, N. A., Martins, L. S., Maia, M. T., Oliveira, A. P. S., Martinez, D. S. T., & Gouveia, R. F. (2023). Designing 3D fractal morphology of eco-friendly nanocellulose-based composite aerogels for water remediation. Chemical Engineering Journal, 462, 142166. https://doi.org/10.1016/j.cej.2023.142166

Ma, L., Xu, Y., Chen, J., Dong, C., & Pang, Z. (2023). Preparation of Cellulose Nanocrystals by Synergistic Action of Ionic Liquid and Recyclable Solid Acid under Mild Conditions. Molecules, 28(7), 3070. https://doi.org/10.3390/molecules28073070

Masruchin, N. (2023). Nanocellulose, The Origin of Natural Reinforcement in Advanced Biocomposites. Journal of Fibers and Polymer Composites, 2(1). https://doi.org/10.55043/jfpc.v2i1.82

Meliță, L., & Croitoru, C. (2019). Aerogel, a high performance material for thermal insulation—A brief overview of the building applications. E3S Web of Conferences, 111, 06069. https://doi.org/10.1051/e3sconf/201911106069

Norfarhana, A. S., Ilyas, R. A., Nazrin, A., Sapuan, S. M., Syafiq, R. M. O., Khoo, P. S., Nordin, A. H., Omran, A. A. B., Midhun, D. C. D., Hawanis, H. S. N., Sari, N. H., Mahardika, M., Asrofi, M., & Abral, H. (2024). Nanocellulose: From biosources to nanofiber and their applications. Physical Sciences Reviews, 9(7), 2419-2444. https://doi.org/10.1515/psr-2022-0008

Picot-Allain, M. C. N., & Emmambux, M. N. (2023). Isolation, Characterization, and Application of Nanocellulose from Agro-industrial By-products: A Review. Food Reviews International, 39(2), 941-969. https://doi.org/10.1080/87559129.2021.1928689

Podgornik, B. (2023). Advanced materials and research for the green future. Materiali in tehnologije, 57(1). https://doi.org/10.17222/mit.2022.717

Rae-Dupree, J. (2023). Biocompatible Materials Offer Sustainability and Enhanced Design. IEEE Pulse, 14(2), 11-14. https://doi.org/10.1109/MPULS.2023.3269744

Rashid, S., & Dutta, H. (2022). Industrial Applications of Cellulose Extracted from Agricultural and Food Industry Wastes. En Shahid‐ul‐Islam, A. H. Shalla, & S. A. Khan (Eds.), Handbook of Biomass Valorization for Industrial Applications (1.a ed., pp. 417-443). Wiley. https://doi.org/10.1002/9781119818816.ch18

Seiler, E. R. D., Takeoka, Y., Rikukawa, M., & Yoshizawa-Fujita, M. (2020). Development of a novel cellulose solvent based on pyrrolidinium hydroxide and reliable solubility analysis. RSC Advances, 10(19), 11475-11480. https://doi.org/10.1039/D0RA01486A

Sharma, J., Sheikh, J., & Behera, B. K. (2023). Aerogel composites and blankets with embedded fibrous material by ambient drying: Reviewing their production, characteristics, and potential applications. Drying Technology, 41(6), 915-947. https://doi.org/10.1080/07373937.2022.2162918

Syafri, E., Jamaluddin, Sari, N. H., Mahardika, M., Amanda, P., & Ilyas, R. A. (2022). Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. International Journ111al of Biological Macromolecules, 200, 25-33. https://doi.org/10.1016/j.ijbiomac.2021.12

Tofanica, B.-M., Belosinschi, D., & Volf, I. (2022). Gels, Aerogels and Hydrogels: A Challenge for the Cellulose-Based Product Industries. Gels, 8(8), 497. https://doi.org/10.3390/gels8080497

Uşurelu, C. D., & Panaitescu, D. M. (2023). Nanocellulose/Nanodiamond Hybrids: A Review. Macromol, 3(2), 400-420. https://doi.org/10.3390/macromol3020024

Xu, K., Chen, Y., Du, G., & Wang, S. (2023). Preparation, Properties, and Advanced Functional Applications of Nanocellulose. En G. Du & X. Zhou (Eds.), Wood Industry—Past, Present and Future Outlook. IntechOpen. https://doi.org/10.5772/intechopen.105807

Yuan, L., & Shen, Y. (2022). A Review of Research on Recyclable Polymer Materials. MATEC Web of Conferences, 363, 01025. https://doi.org/10.1051/matecconf/202236301025

Zheng, L., Zhang, S., Ying, Z., Liu, J., Zhou, Y., & Chen, F. (2020). Engineering of Aerogel-Based Biomaterials for Biomedical Applications. International Journal of Nanomedicine, Volume 15, 2363-2378. https://doi.org/10.2147/IJN.S238005

Zhou, W., Fang, J., Tang, S., Wu, Z., & Wang, X. (2021). 3D-Printed Nanocellulose-Based Cushioning–Antibacterial Dual-Function Food Packaging Aerogel. Molecules, 26(12), 3543. https://doi.org/10.3390/molecules26123543

Publicado

22-09-2024

Cómo citar

Lescano, J. G. (2024). Aerogeles a partir de nanocelulosa: Aplicaciones en la agroindustria. AgroScience Research, 2(2), 57–63. https://doi.org/10.17268/agrosci.2024.006