Aerogeles a partir de nanocelulosa: Aplicaciones en la agroindustria
DOI:
https://doi.org/10.17268/agrosci.2024.006Palabras clave:
aerogel, nanocelulosa, capacidad de absorción, conductividad térmica, residuos agroindustriales, celulosaResumen
Los aerogeles a base de nanocelulosa han emergido como materiales prometedores en diversas aplicaciones industriales debido a sus propiedades excepcionales, como alta porosidad, baja densidad y capacidad de absorción. Estos materiales, derivados del biopolímero más abundante en la Tierra, la celulosa, presentan ventajas significativas en la búsqueda de soluciones sostenibles y eficientes. La nanocelulosa, obtenida a través de métodos avanzados de síntesis, ofrece una combinación única de resistencia mecánica, biodegradabilidad y compatibilidad ambiental. Este artículo revisa las aplicaciones de los aerogeles de nanocelulosa en la agroindustria, destacando su potencial en el embalaje de alimentos, control de humedad y filtración de agua, entre otros. Además, se exploran los desafíos asociados con su producción a gran escala y las perspectivas futuras en la integración de estos materiales en sistemas industriales y tecnológicos más amplios. Con un enfoque en la sostenibilidad y la eficiencia, los aerogeles de nanocelulosa representan una innovación clave en la ciencia de los materiales y sus aplicaciones en sectores críticos.
Citas
Abdullah, Zou, Y., Farooq, S., Walayat, N., Zhang, H., Faieta, M., Pittia, P., & Huang, Q. (2023). Bio-aerogels: Fabrication, properties and food applications. Critical Reviews in Food Science and Nutrition, 63(24), 6687-6709. https://doi.org/10.1080/10408398.2022.2037504
Araby, S., Qiu, A., Wang, R., Zhao, Z., Wang, C.-H., & Ma, J. (2016). Aerogels based on carbon nanomaterials. Journal of Materials Science, 51(20), 9157-9189. https://doi.org/10.1007/s10853-016-0141-z
Aragón-Gutierrez, A., Arrieta, M. P., López-González, M., Fernández-García, M., & López, D. (2020). Hybrid Biocomposites Based on Poly(Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 13(21), 4910. https://doi.org/10.3390/ma13214910
Araújo, D. J. C., Vilarinho, M. C. L. G., & Machado, A. V. (2019). Agroindustrial residues as cellulose source for food packaging applications. En C. Vilarinho, F. Castro, M. Gonçalves, & A. L. Fernando (Eds.), Wastes: Solutions, Treatments and Opportunities III (1.a ed., pp. 217-223). CRC Press. https://doi.org/10.1201/9780429289798-35
Aycock, R. (2017). Comparing the Bulk Modulus of Aerogels Obtained Through Different Formulas. Research & Development in Material Science, 2(3). https://doi.org/10.31031/RDMS.2017.02.000537
Azadi, E., & Dinari, M. (2023). Green Synthesis, Characterization, and Properties of Carbon Aerogels. En Shahid Ul Islam & C. M. Hussain (Eds.), ACS Symposium Series (Vol. 1441, pp. 1-23). American Chemical Society. https://doi.org/10.1021/bk-2023-1441.ch001
Balaji, D., Sivalingam, S., Bhuvaneswari, V., Amarnath, V., Adithya, J., Balavignesh, V., & Ganesh Surya, R. (2022). Aerogels as alternatives for thermal insulation in buildings – A comparative teeny review. Materials Today: Proceedings, 62, 5371-5377. https://doi.org/10.1016/j.matpr.2022.03.541
Budtova, T., Aguilera, D. A., Beluns, S., Berglund, L., Chartier, C., Espinosa, E., Gaidukovs, S., Klimek-Kopyra, A., Kmita, A., Lachowicz, D., Liebner, F., Platnieks, O., Rodríguez, A., Tinoco Navarro, L. K., Zou, F., & Buwalda, S. J. (2020). Biorefinery Approach for Aerogels. Polymers, 12(12), 2779. https://doi.org/10.3390/polym12122779
Calvo, V., Álvarez Sánchez, M. Á., Güemes, L., Martínez-Barón, C., Baúlde, S., Criado, A., González-Domínguez, J. M., Maser, W. K., & Benito, A. M. (2023). Preparation of Cellulose Nanocrystals: Controlling the Crystalline Type by One-Pot Acid Hydrolysis. ACS Macro Letters, 12(2), 152-158. https://doi.org/10.1021/acsmacrolett.2c00705
Carter, N., Grant, I., Dewey, M., Bourque, M., & Neivandt, D. J. (2021). Production and Characterization of Cellulose Nanofiber Slurries and Sheets for Biomedical Applications. Frontiers in Nanotechnology, 3, 729743. https://doi.org/10.3389/fnano.2021.729743
Clauser, N. M., Felissia, F. F., Area, M. C., & Vallejos, M. E. (2022). Technological and economic barriers of industrial-scale production of nanocellulose. En Green Nanomaterials for Industrial Applications (pp. 21-39). Elsevier. https://doi.org/10.1016/B978-0-12-823296-5.00015-0
Donėlienė, J., Fataraitė-Urbonienė, E., Danchova, N., Gutzov, S., & Ulbikas, J. (2022). The Influence of the Precursor’s Nature and Drying Conditions on the Structure, Morphology, and Thermal Properties of TiO2 Aerogels. Gels, 8(7), 422. https://doi.org/10.3390/gels8070422
Fagnani, D. E., Jehanno, C., Sardon, H., & McNeil, A. J. (2022). Sustainable Green Polymerizations and End‐of‐Life Treatment of Polymers. Macromolecular Rapid Communications, 43(13), 2200446. https://doi.org/10.1002/marc.202200446
Fernandes, A., Cruz-Lopes, L., Esteves, B., & Evtuguin, D. (2023). Nanotechnology Applied to Cellulosic Materials. Materials, 16(8), 3104. https://doi.org/10.3390/ma16083104
Guild, M. D., García-Chocano, V. M., Sánchez-Dehesa, J., Martin, T. P., Calvo, D. C., & Orris, G. J. (2016). Aerogel as a Soft Acoustic Metamaterial for Airborne Sound. Physical Review Applied, 5(3), 034012. https://doi.org/10.1103/PhysRevApplied.5.034012
Karamikamkar, S., Yalcintas, E. P., Haghniaz, R., De Barros, N. R., Mecwan, M., Nasiri, R., Davoodi, E., Nasrollahi, F., Erdem, A., Kang, H., Lee, J., Zhu, Y., Ahadian, S., Jucaud, V., Maleki, H., Dokmeci, M. R., Kim, H., & Khademhosseini, A. (2023). Aerogel‐Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease‐Targeting Applications. Advanced Science, 10(23), 2204681. https://doi.org/10.1002/advs.202204681
Liu, P., Chen, X., Li, Y., Cheng, P., Tang, Z., Lv, J., Aftab, W., & Wang, G. (2022). Aerogels Meet Phase Change Materials: Fundamentals, Advances, and Beyond. ACS Nano, 16(10), 15586-15626. https://doi.org/10.1021/acsnano.2c05067
Lopes, W. C., Brito, F. M., Neto, F. E., Araújo, A. R., Leite, R. C., Viana, V. G. F., Silva-Filho, E. C., & Silva, D. A. (2023a). Development of a New Clay-Based Aerogel Composite from Ball Clay from Piauí, Brazil and Polysaccharides. Polymers, 15(11), 2412. https://doi.org/10.3390/polym15112412
Lopes, W. C., Brito, F. M., Neto, F. E., Araújo, A. R., Leite, R. C., Viana, V. G. F., Silva-Filho, E. C., & Silva, D. A. (2023b). Development of a New Clay-Based Aerogel Composite from Ball Clay from Piauí, Brazil and Polysaccharides. Polymers, 15(11), 2412. https://doi.org/10.3390/polym15112412
Lorevice, M. V., Claro, P. I. C., Aleixo, N. A., Martins, L. S., Maia, M. T., Oliveira, A. P. S., Martinez, D. S. T., & Gouveia, R. F. (2023). Designing 3D fractal morphology of eco-friendly nanocellulose-based composite aerogels for water remediation. Chemical Engineering Journal, 462, 142166. https://doi.org/10.1016/j.cej.2023.142166
Ma, L., Xu, Y., Chen, J., Dong, C., & Pang, Z. (2023). Preparation of Cellulose Nanocrystals by Synergistic Action of Ionic Liquid and Recyclable Solid Acid under Mild Conditions. Molecules, 28(7), 3070. https://doi.org/10.3390/molecules28073070
Masruchin, N. (2023). Nanocellulose, The Origin of Natural Reinforcement in Advanced Biocomposites. Journal of Fibers and Polymer Composites, 2(1). https://doi.org/10.55043/jfpc.v2i1.82
Meliță, L., & Croitoru, C. (2019). Aerogel, a high performance material for thermal insulation—A brief overview of the building applications. E3S Web of Conferences, 111, 06069. https://doi.org/10.1051/e3sconf/201911106069
Norfarhana, A. S., Ilyas, R. A., Nazrin, A., Sapuan, S. M., Syafiq, R. M. O., Khoo, P. S., Nordin, A. H., Omran, A. A. B., Midhun, D. C. D., Hawanis, H. S. N., Sari, N. H., Mahardika, M., Asrofi, M., & Abral, H. (2024). Nanocellulose: From biosources to nanofiber and their applications. Physical Sciences Reviews, 9(7), 2419-2444. https://doi.org/10.1515/psr-2022-0008
Picot-Allain, M. C. N., & Emmambux, M. N. (2023). Isolation, Characterization, and Application of Nanocellulose from Agro-industrial By-products: A Review. Food Reviews International, 39(2), 941-969. https://doi.org/10.1080/87559129.2021.1928689
Podgornik, B. (2023). Advanced materials and research for the green future. Materiali in tehnologije, 57(1). https://doi.org/10.17222/mit.2022.717
Rae-Dupree, J. (2023). Biocompatible Materials Offer Sustainability and Enhanced Design. IEEE Pulse, 14(2), 11-14. https://doi.org/10.1109/MPULS.2023.3269744
Rashid, S., & Dutta, H. (2022). Industrial Applications of Cellulose Extracted from Agricultural and Food Industry Wastes. En Shahid‐ul‐Islam, A. H. Shalla, & S. A. Khan (Eds.), Handbook of Biomass Valorization for Industrial Applications (1.a ed., pp. 417-443). Wiley. https://doi.org/10.1002/9781119818816.ch18
Seiler, E. R. D., Takeoka, Y., Rikukawa, M., & Yoshizawa-Fujita, M. (2020). Development of a novel cellulose solvent based on pyrrolidinium hydroxide and reliable solubility analysis. RSC Advances, 10(19), 11475-11480. https://doi.org/10.1039/D0RA01486A
Sharma, J., Sheikh, J., & Behera, B. K. (2023). Aerogel composites and blankets with embedded fibrous material by ambient drying: Reviewing their production, characteristics, and potential applications. Drying Technology, 41(6), 915-947. https://doi.org/10.1080/07373937.2022.2162918
Syafri, E., Jamaluddin, Sari, N. H., Mahardika, M., Amanda, P., & Ilyas, R. A. (2022). Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. International Journ111al of Biological Macromolecules, 200, 25-33. https://doi.org/10.1016/j.ijbiomac.2021.12
Tofanica, B.-M., Belosinschi, D., & Volf, I. (2022). Gels, Aerogels and Hydrogels: A Challenge for the Cellulose-Based Product Industries. Gels, 8(8), 497. https://doi.org/10.3390/gels8080497
Uşurelu, C. D., & Panaitescu, D. M. (2023). Nanocellulose/Nanodiamond Hybrids: A Review. Macromol, 3(2), 400-420. https://doi.org/10.3390/macromol3020024
Xu, K., Chen, Y., Du, G., & Wang, S. (2023). Preparation, Properties, and Advanced Functional Applications of Nanocellulose. En G. Du & X. Zhou (Eds.), Wood Industry—Past, Present and Future Outlook. IntechOpen. https://doi.org/10.5772/intechopen.105807
Yuan, L., & Shen, Y. (2022). A Review of Research on Recyclable Polymer Materials. MATEC Web of Conferences, 363, 01025. https://doi.org/10.1051/matecconf/202236301025
Zheng, L., Zhang, S., Ying, Z., Liu, J., Zhou, Y., & Chen, F. (2020). Engineering of Aerogel-Based Biomaterials for Biomedical Applications. International Journal of Nanomedicine, Volume 15, 2363-2378. https://doi.org/10.2147/IJN.S238005
Zhou, W., Fang, J., Tang, S., Wu, Z., & Wang, X. (2021). 3D-Printed Nanocellulose-Based Cushioning–Antibacterial Dual-Function Food Packaging Aerogel. Molecules, 26(12), 3543. https://doi.org/10.3390/molecules26123543
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
El autor es el titular de los derechos de autor sin restricciones, por lo que está permitida la reutilización del contenido bajo una licencia Atribución 4.0 Internacional (CC BY 4.0)
Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original. Esta es la licencia más servicial de las ofrecidas. Recomendada para una máxima difusión y utilización de los materiales sujetos a la licencia.