Compuestos fenólicos vegetales y su encapsulación: Análisis bibliométrico enfocado en especies subvaloradas del Perú
DOI:
https://doi.org/10.17268/agrosci.2025.014Palabras clave:
algarrobo, mashua, guama, cañihua, clean-label, atomización, nanoencapsulaciónResumen
La inestabilidad térmica y oxidativa de los compuestos fenólicos vegetales dificulta su incorporación directa en alimentos. Para evaluar las soluciones disponibles, se analizaron 86 artículos de Scopus (2014 - 2025) sobre tecnologías de encapsulación, con énfasis en cuatro cultivos peruanos: algarrobo (Prosopis pallida), guama (Inga edulis), mashua negra (Tropaeolum tuberosum) y cañihua (Chenopodium pallidicaule). Los mapas de coocurrencia (VOSviewer®) muestran predominio de spray-drying y nanoencapsulación con biopolímeros, empleando principalmente maltodextrina, goma arábiga y quitosano. Los mejores resultados se obtuvieron con algarrobo (92% de eficiencia y > 85% de retención antioxidante) y con extractos de guama tratados por CO₂ supercrítico (pérdidas < 5 %). En mashua, la liofilización conservó el 88% de la capacidad FRAP, mientras que nanoemulsiones de cañihua mejoraron la bioaccesibilidad intestinal sin afectar la calidad sensorial del pan integral. El análisis temporal revela un cambio de foco: de estudios de digestión y estabilidad (2014 - 2018) a aplicaciones antimicrobianas y matrices sostenibles (2019 - 2025). Persisten vacíos en biodisponibilidad clínica y escalado industrial, sobre todo para guama y cañihua. Estos hallazgos orientan el desarrollo de ingredientes funcionales con identidad peruana y subrayan la necesidad de optimizar procesos que protejan fenoles termolábiles.
Citas
Alemán, A., Marín, D., Taladrid, D., Montero, P., & Carmen Gómez-Guillén, M. (2019). Encapsulation of antioxidant sea fennel (Crithmum maritimum) aqueous and ethanolic extracts in freeze-dried soy phosphatidylcholine liposomes. Food Research International, 119, 665-674. https://doi.org/10.1016/j.foodres.2018.10.044
Azizkhani, M., & Sodanlo, A. (2021). Antioxidant activity of Eryngium campestre L., Froriepia subpinnata, and Mentha spicata L. polyphenolic extracts nanocapsulated in chitosan and maltodextrin. Journal of Food Processing and Preservation, 45(2). https://doi.org/10.1111/jfpp.15120
Bassan, L. T., Nascimento, K. R., Choquetico Iquiapaza, I. Y., da Silva Ferreira, M. E., Tapia-Blacido, D. R., Fabi, J. P., & Martelli-Tosi, M. (2025). Chitosan suspension enriched with phenolics extracted from pineapple by-products as bioactive coating for liposomes: Physicochemical properties and in vitro cytotoxicity. Food Research International, 201. https://doi.org/10.1016/j.foodres.2024.115571
Bergesse, A. E., Asensio, C. M., Quiroga, P. R., Ryan, L. C., Grosso, N. R., & Nepote, V. (2023). Microencapsulation of phenolic compounds extracted from soybean seed coats by spray-drying. Journal of Food Science, 88(11), 4457-4471. https://doi.org/10.1111/1750-3841.16775
Brito de Souza, V., Thomazini, M., Chaves, I. E., Ferro-Furtado, R., & Favaro-Trindade, C. S. (2020). Microencapsulation by complex coacervation as a tool to protect bioactive compounds and to reduce astringency and strong flavor of vegetable extracts. Food Hydrocolloids, 98. https://doi.org/10.1016/j.foodhyd.2019.105244
Castañeta, G., Miranda-Flores, D., Bascopé, M., & Peñarrieta, J. M. (2024). Characterization of carotenoids, proximal analysis, phenolic compounds, anthocyanidins and antioxidant capacity of an underutilized tuber (Tropaeolum tuberosum) from Bolivia. Discover Food, 4(1). https://doi.org/10.1007/s44187-024-00078-8
Chabni, A., Bañares, C., Sanchez-Rey, I., & Torres, C. F. (2025). Active Biodegradable Packaging Films Based on the Revalorization of Food-Grade Olive Oil Mill By-Products. Applied Sciences, 15(1), Article 1. https://doi.org/10.3390/app15010312
Chauhan, K., & Rao, A. (2024). Clean-label alternatives for food preservation: An emerging trend. Heliyon, 10(16). https://doi.org/10.1016/j.heliyon.2024.e35815
Chen, X., Chhun, S., Xiang, J., Tangjaidee, P., Peng, Y., & Quek, S. Y. (2021). Microencapsulation of Cyclocarya paliurus (Batal.) iljinskaja extracts: A promising technique to protect phenolic compounds and antioxidant capacities. Foods, 10(12). https://doi.org/10.3390/foods10122910
Chirinos, R., Pedreschi, R., Cedano, I., & Campos, D. (2015). Antioxidants from Mashua (Tropaeolum tuberosum) Control Lipid Oxidation in Sacha Inchi (Plukenetia volubilis L.) Oil and Raw Ground Pork Meat. Journal of Food Processing and Preservation, 39(6), 2612-2619. https://doi.org/10.1111/jfpp.12511
Coloma, A., Flores-Mamani, E., Quille-Calizaya, G., Zaira-Churata, A., Apaza-Ticona, J., Calsina-Ponce, W. C., Huata-Panca, P., Inquilla-Mamani, J., & Huanca-Rojas, F. (2022). Characterization of Nutritional and Bioactive Compound in Three Genotypes of Mashua (Tropaeolum tuberosum Ruiz and Pavón) from Different Agroecological Areas in Puno. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/7550987
da Silva, T. E. B., de Oliveira, Y. P., de Carvalho, L. B. A., dos Santos, J. A. B., dos Santos Lima, M., Fernandes, R., de Assis, C. F., & Passos, T. S. (2025). Nanoparticles based on whey and soy proteins enhance the antioxidant activity of phenolic compound extract from Cantaloupe melon pulp flour (Cucumis melo L.). Food Chemistry, 464. https://doi.org/10.1016/j.foodchem.2024.141738
de Freitas, F. A., Araújo, R. C., Soares, E. R., Nunomura, R. C. S., da Silva, F. M. A., da Silva, S. R. S., de Souza, A. Q. L., de Souza, A. D. L., Franco-Montalbán, F., Acho, L. D. R., Lima, E. S., Bataglion, G. A., & Koolen, H. H. F. (2018). Biological evaluation and quantitative analysis of antioxidant compounds in pulps of the Amazonian fruits bacuri (Platonia insignis Mart.), ingá (Inga edulis Mart.), and uchi (Sacoglottis uchi Huber) by UHPLC-ESI-MS/MS. Journal of Food Biochemistry, 42(1). https://doi.org/10.1111/jfbc.12455
Fonseca, L. M., Radünz, M., dos Santos Hackbart, H. C., da Silva, F. T., Camargo, T. M., Bruni, G. P., Monks, J. L. F., da Rosa Zavareze, E., & Dias, A. R. G. (2020). Electrospun potato starch nanofibers for thyme essential oil encapsulation: Antioxidant activity and thermal resistance. Journal of the Science of Food and Agriculture, 100(11), 4263-4271. https://doi.org/10.1002/jsfa.10468
Gonzales, U., Dijkshoorn, R., Maloncy, M., Finimundy, T., Calhelha, R. C., Pereira, C., Stojković, D., Soković, M., Ferreira, I. C. F. R., Barros, L., & Cadavez, V. (2020). Nutritive and bioactive properties of mesquite (Prosopis pallida) flour and its technological performance in breadmaking. Foods, 9(5). https://doi.org/10.3390/foods9050597
Han, Q., Zhang, X., Nian, H., Liu, H., Li, X., Zhang, R., & Bao, J. (2022). Artificial rearing alters intestinal microbiota and induces inflammatory response in piglets. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1002738
Hunsub, P., Ngamprasertsith, S., Prichapan, N., Sakdasri, W., Karnchanatat, A., & Sawangkeaw, R. (2025). Life cycle assessment of spray-drying encapsulation of crude peptides produced from defective green coffee beans. Clean Technologies and Environmental Policy, 27(3), 1535-1550. https://doi.org/10.1007/s10098-024-02913-z
Liew, S. Y., Mohd Zin, Z., Mohd Maidin, N. M., Mamat, H., & Zainol, M. K. (2020). Effect of the different encapsulation methods on the physicochemical and biological properties of Clitoria ternatea flowers microencapsulated in gelatine. Food Research, 4(4), 1098-1108. https://doi.org/10.26656/fr.2017.4(4).033
Marković, J., Salević-Jelić, A., Milinčić, D., Gašić, U., Pavlović, V., Rabrenović, B., Pešić, M., Lević, S., Mihajlović, D., & Nedović, V. (2025). Horseradish (Armoracia rusticana L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as potential antioxidants in mayonnaise production. Food Chemistry, 464. https://doi.org/10.1016/j.foodchem.2024.141777
Mohammadi, A., Jafari, S. M., Esfanjani, A. F., & Akhavan, S. (2016). Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, 190, 513-519. https://doi.org/10.1016/j.foodchem.2015.05.115
Ortiz, J., Ibieta, G., Tullberg, C., Peñarrieta, J. M., & Linares-Pastén, J. A. (2024). Chemical Characterisation of New Oils Extracted from Cañihua and Tarwi Seeds with Different Organic Solvents. Foods, 13(13). https://doi.org/10.3390/foods13131982
Ozgolet, M., Belkacemi, L., & Arici, M. (2025). Enhancing the nutritional and textural properties of gluten-free shortbread biscuits: The potential of white-fleshed sweet potato flour blended with corn starch. Journal of Food Science, 90(3). https://doi.org/10.1111/1750-3841.70123
Pereira, M. C., Oliveira, D. A., Hill, L. E., Zambiazi, R. C., Borges, C. D., Vizzotto, M., Mertens-Talcott, S., Talcott, S., & Gomes, C. L. (2018). Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chemistry, 240, 396-404. https://doi.org/10.1016/j.foodchem.2017.07.144
Pilatti, D., dos Santos, D. F., Meinhart, A. D., Knapp, M. A., Hackbart, H. C. D. S., & Pinto, V. Z. (2019). Impact of the use of saccharides in the encapsulation of Ilex paraguariensis extract. Food Research International, 125. https://doi.org/10.1016/j.foodres.2019.108600
Quispe, C., Petroll, K., Theoduloz, C., & Schmeda-Hirschmann, G. (2014). Antioxidant effect and characterization of South American Prosopis pods syrup. Food Research International, 56, 174-181. https://doi.org/10.1016/j.foodres.2013.12.033
Radünz, M., Mota Camargo, T., dos Santos Hackbart, H. C., Blank, J. P., Hoffmann, J. F., Moro Stefanello, F., & da Rosa Zavareze, E. (2021). Encapsulation of broccoli extract by electrospraying: Influence of in vitro simulated digestion on phenolic and glucosinolate contents, and on antioxidant and antihyperglycemic activities. Food Chemistry, 339. https://doi.org/10.1016/j.foodchem.2020.128075
Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chemistry, 220, 115-122. https://doi.org/10.1016/j.foodchem.2016.09.207
Rodriguez, I. F., Pérez, M. J., Cattaneo, F., Zampini, I. C., Cuello, A. S., Mercado, M. I., Ponessa, G., & Isla, M. I. (2019). Morphological, histological, chemical and functional characterization of Prosopis alba flours of different particle sizes. Food Chemistry, 274, 583-591. https://doi.org/10.1016/j.foodchem.2018.09.024
Rodsamran, P., & Sothornvit, R. (2018). Microencapsulation of Thai rice grass (O. Sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film. Food Chemistry, 242, 239-246. https://doi.org/10.1016/j.foodchem.2017.09.064
Tomé, A. C., & da Silva, F. A. (2022). Alginate based encapsulation as a tool for the protection of bioactive compounds from aromatic herbs. Food Hydrocolloids for Health, 2. https://doi.org/10.1016/j.fhfh.2021.100051
Tranquilino, E., Martínez-Flores, H. E., Rodiles-López, J. O., & Martínez-Avila, G. C. G. (2021). Nanoencapsulation and identification of phenolic compounds by UPLC-Q/TOF-MS2of an antioxidant extract from Opuntia atropes. Functional Foods in Health and Disease, 10(12), 505-519. https://doi.org/10.31989/FFHD.V10I12.763
Veggi, P. C., Cavalcanti, R. N., & Meireles, M. A. A. (2023). Production of phenolic-rich extracts from Brazilian plants using supercritical and subcritical fluid extraction: Experimental data and economic evaluation. Journal of Food Engineering, 131, 96-109. https://doi.org/10.1016/j.jfoodeng.2014.01.027
Villanueva Haro, S. R. (2025). Microencapsulación del extracto acuoso de Verbena officinalis L. (Verbena) mediante secado por aspersión y la eficiencia bioactiva en la digestión gastrointestinal in vitro. Tesis de grado. Universidad Nacional Agraria de la Selva.
Zorzenon, M. R. T., Formigoni, M., da Silva, S. B., Hodas, F., Piovan, S., Ciotta, S. R., Jansen, C. A., Dacome, A. S., Pilau, E. J., Mareze-Costa, C. E., Milani, P. G., & Costa, S. C. (2020). Spray drying encapsulation of stevia extract with maltodextrin and evaluation of the physicochemical and functional properties of produced powders. Journal of Food Science, 85(10), 3590-3600. https://doi.org/10.1111/1750-3841.15437
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Oscar Layza

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
El autor es el titular de los derechos de autor sin restricciones, por lo que está permitida la reutilización del contenido bajo una licencia Atribución 4.0 Internacional (CC BY 4.0)
Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original. Esta es la licencia más servicial de las ofrecidas. Recomendada para una máxima difusión y utilización de los materiales sujetos a la licencia.
