Técnicas de extracción de colágeno y optimización de la hidrólisis a partir de residuos animales: Una revisión bibliométrica

Autores

Palavras-chave:

Prácticas ecológicas, sostenibilidad, extracción, residuos animales

Resumo

Este estudio se centró en la extracción de colágeno a partir de residuos de pavo, evaluando su potencial como materia prima sostenible para aplicaciones biomédicas y tecnológicas. Se aplicó un enfoque metodológico basado en el análisis de parámetros críticos como tiempo, temperatura y pH para optimizar el rendimiento y la calidad del colágeno obtenido. La investigación incluyó una revisión exhaustiva de la literatura, utilizando bases de datos como Scopus y herramientas bibliométricas como VosViewer y Bibliometrix para analizar publicaciones clave entre 2018 y 2024. Los resultados mostraron que la extracción de colágeno a partir de residuos animales no solo ofrece una solución ecológica, sino que también presenta una viabilidad significativa para la industria, con aplicaciones que van desde la biomedicina hasta la cosmética. La optimización de los procesos de extracción y la adopción de prácticas sostenibles fueron identificadas como elementos esenciales para maximizar la eficiencia y calidad del colágeno, promoviendo así el aprovechamiento de recursos infrautilizados y reduciendo el impacto ambiental asociado.

Referências

Alemu, L. G., Tesfaye, T., Babu, K. M., Solomon, B., Teshome, Z., & Ahmed, F. E. (2023). Optimization of Gelatine Synthesis from Lime Fleshed Hide Trim Solid Waste. Textile and Leather Review, 6, 233-251. https://doi.org/10.31881/TLR.2023.025

Amirtham, S. M., Parasuraman, G., Lisha, J. J., Francis, D. V., Livingston, A., Rebekah, G., Sathishkumar, S., & Vinod, E. (2024). Decellularized fetal collagen exhibits chondroinductive potential for bone marrow-derived mesenchymal stem cells by enhancing glycosaminoglycan production. European Journal of Anatomy, 28(1), 13-23. https://doi.org/10.52083/KJJC3228

Anandito, R. B. K., Purwanto, E., Praseptiangga, D., & Zaman, M. Z. (2024). Optimization of cobia fish (Rachycentron canadum) gelatin extraction with response surface methodology. Food Research, 8, 139-147. https://doi.org/10.26656/fr.2017.8(S2).98

Araújo, Í. B. S., Bezerra, T. K. A., Nascimento, E. S., Gadelha, C. A. A., Santi-Gadelha, T., & Madruga, M. S. (2018). Optimal conditions for obtaining collagen from chicken feet and its characterization. Food Science and Technology (Brazil), 38, 167-173. https://doi.org/10.1590/fst.27517

Blanco, M., Vázquez, J. A., Pérez-Martín, R. I., & Sotelo, C. G. (2019). Collagen extraction optimization from the skin of the small-spotted catshark (S. Canicula) by response surface methodology. Marine Drugs, 17(1). https://doi.org/10.3390/md17010040

Caruso, G., Floris, R., Serangeli, C., & Di Paola, L. (2020). Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Marine Drugs, 18(12). https://doi.org/10.3390/md18120622

Cutajar, N., Lia, F., Deidun, A., Galdies, J., Arizza, V., & Zammit Mangion, M. (2022). Turning Waste into A Resource: Isolation and Characterization of High‐Quality Collagen and Oils from Atlantic Bluefin Tuna Discards. Applied Sciences (Switzerland), 12(3). https://doi.org/10.3390/app12031542

Desanlis, A., Albouy, M., Rousselle, P., Thépot, A., Santos, M. D., Auxenfans, C., & Marquette, C. (2021). Validation of an implantable bioink using mechanical extraction of human skin cells: First steps to a 3D bioprinting treatment of deep second degree burn. Journal of Tissue Engineering and Regenerative Medicine, 15(1), 37-48. https://doi.org/10.1002/term.3148

Fan, L., Ren, Y., Emmert, S., Vučković, I., Stojanovic, S., Najman, S., Schnettler, R., Barbeck, M., Schenke-Layland, K., & Xiong, X. (2023). The Use of Collagen-Based Materials in Bone Tissue Engineering. International Journal of Molecular Sciences, 24(4). https://doi.org/10.3390/ijms24043744

García-Santiago, X., Franco-Uría, A., Antelo, L. T., Vázquez, J. A., Pérez-Martín, R., Moreira, M. T., & Feijoo, G. (2021). Eco-efficiency of a marine biorefinery for valorization of cartilaginous fish biomass. Journal of Industrial Ecology, 25(3), 789-801. https://doi.org/10.1111/jiec.13066

Hamid, A. H., Elgharbawy, A. A., Rohman, A., Rashidi, O., Hammed, H., & Nurrulhidayah, A. F. (2019). Optimisation of browning index of maillard reaction in gelatine powder by response surface methodology (RSM) for halal authentication. Food Research, 3(5), 525-529. https://doi.org/10.26656/fr.2017.3(5).116

Huang, S., Rao, Y., Ju, A. L., Ker, D. F. E., Blocki, A. M., Wang, D. M., & Tuan, R. S. (2024). Non-collagenous proteins, rather than the collagens, are key biochemical factors that mediate tenogenic bioactivity of tendon extracellular matrix. Acta Biomaterialia, 176, 99-115. https://doi.org/10.1016/j.actbio.2023.12.032

Khawli, F. A., Pateiro, M., Domínguez, R., Lorenzo, J. M., Gullón, P., Kousoulaki, K., Ferrer, E., Berrada, H., & Barba, F. J. (2019). Innovative green technologies of intensification for valorization of seafood and their by-products. Marine Drugs, 17(12). https://doi.org/10.3390/md17120689

Kheirabadi, E. K., Razavi, S. H., Khodaiyan, F., & Golmakani, M.-T. (2018). Optimizing the extraction of acid-soluble collagen inside the eggshell membrane. Food Science and Technology Research, 24(3), 385-394. https://doi.org/10.3136/fstr.24.385

Lee, E. H., Chun, S. Y., Lee, J. N., Yoon, B. H., Chung, J.-W., Han, M.-H., Kwon, T. G., Ha, Y.-S., & Kim, B. S. (2022). Optimized Collagen Extraction Process to Obtain High Purity and Large Quantity of Collagen from Human Perirenal Adipose Tissue. BioMed Research International, 2022. https://doi.org/10.1155/2022/3628543

Li, H., Tian, J., Cao, H., Tang, Y., Huang, F., & Yang, Z. (2023). Preparation of Enzyme-Soluble Swim Bladder Collagen from Sea Eel (Muraenesox cinereus) and Evaluation Its Wound Healing Capacity. Marine Drugs, 21(10). https://doi.org/10.3390/md21100525

Marinkovic, M., Sridharan, R., Santarella, F., Smith, A., Garlick, J. A., & Kearney, C. J. (2021). Optimization of extracellular matrix production from human induced pluripotent stem cell-derived fibroblasts for scaffold fabrication for application in wound healing. Journal of Biomedical Materials Research - Part A, 109(10), 1803-1811. https://doi.org/10.1002/jbm.a.37173

Milovanovic, I., & Hayes, M. (2018). Marine gelatine from rest raw materials. Applied Sciences (Switzerland), 8(12). https://doi.org/10.3390/app8122407

Nguyen, B. C., Nguyen, H. M. X., Nguyen, K. H. N., & Kha, T. C. (2020). Optimization of treatment conditions for non-collagen removal from yellowfin tuna skin (Thunnus albacares). Chiang Mai University Journal of Natural Sciences, 19(3), 548-562. https://doi.org/10.12982/CMUJNS.2020.0036

Phon, S., Pradana, A. L., & Thanasupsin, S. P. (2023). Recovery of Collagen/Gelatin from Fish Waste with Carbon Dioxide as a Green Solvent: An Optimization and Characterization. Recycling, 8(2). https://doi.org/10.3390/recycling8020030

Tsegay, Z. T., Agriopoulou, S., Chaari, M., Smaoui, S., & Varzakas, T. (2024). Statistical Tools to Optimize the Recovery of Bioactive Compounds from Marine Byproducts. Marine Drugs, 22(4). https://doi.org/10.3390/md22040182

Valério, N., Soares, M., Vilarinho, C., Correia, M., & Carvalho, J. (2023). Diving into Fish Valorisation: Review Opportunities and Analyzing Azorean Fish Data. Processes, 11(7). https://doi.org/10.3390/pr11071998

Vate, N. K., Undeland, I., & Abdollahi, M. (2022). Resource efficient collagen extraction from common starfish with the aid of high shear mechanical homogenization and ultrasound. Food Chemistry, 393. https://doi.org/10.1016/j.foodchem.2022.133426

Veiga, A., Silva, I. V., Duarte, M. M., & Oliveira, A. L. (2021). Current trends on protein driven bioinks for 3d printing. Pharmaceutics, 13(9). https://doi.org/10.3390/pharmaceutics13091444

Wang, B., Li, W., Liu, S., Hu, X., Zhang, S., & Yang, S. (2023). Extraction Process Optimization and Functional Characteristics of by Papain Solubilized Collagen from Large Yellow Croaker (Pseudosciaena crocea) Skin. American Journal of Biochemistry and Biotechnology, 19(4), 347-357. https://doi.org/10.3844/ajbbsp.2023.347.357

Yu, F., Zong, C., Jin, S., Zheng, J., Chen, N., Huang, J., Chen, Y., Huang, F., Yang, Z., Tang, Y., & Ding, G. (2018). Optimization of extraction conditions and characterization of pepsin-solubilised collagen from skin of giant croaker (nibea japonica). Marine Drugs, 16(1). https://doi.org/10.3390/md16010029

Yulianti, D., Harmita, & Rukmana, T. I. (2018). Isolation, purification, and characterization of bovine tendon collagen and analysis of glycine, proline, and hydroxyproline by high-performance liquid chromatography-fluorescence. International Journal of Applied Pharmaceutics, 10(Special Issue 1), 311-315. https://doi.org/10.22159/ijap.2018.v10s1.69

Zheng, J., Tian, X., Xu, B., Yuan, F., Gong, J., & Yang, Z. (2020). Collagen peptides from swim bladders of giant croaker (Nibea japonica) and their protective effects against H2O2-induced oxidative damage toward human umbilical vein endothelial cells. Marine Drugs, 18(8). https://doi.org/10.3390/MD18080430

Publicado

2024-11-21

Como Citar

Castillo Mendez, L., & Alvarez Lucas, L. (2024). Técnicas de extracción de colágeno y optimización de la hidrólisis a partir de residuos animales: Una revisión bibliométrica. AgroScience Research, 2(2), 65–71. Recuperado de https://agroscienceresearch.com/index.php/journal/article/view/20

Edição

Seção

Artículos